Jamming in frictionless packings of spheres: determination of the critical volume fraction
نویسندگان
چکیده
The jamming transition in granular packings is characterized by a sudden change in the coordination number. In this work we investigate the evolution of coordination number as function of volume fraction for frictionless packings of spheres undergoing isotropic deformation. Using the results obtained from Discrete Element Method simulations, we confirm that the coordination number depends on volume fraction by a power law with exponent α ≈ 0.5 above the critical volume fraction and up to rather high densities. We find that the system size and loading rate do not have an important effect on the evolution of the coordination number. Polydispersity of the packing seems to cause a shift in the critical volume fraction, i.e., more heterogeneous packings jam at higher volume fractions. Finally, we propose and evaluate alternative methods to determine the critical volume fraction based on the number of rattlers, the pressure and the ratio of kinetic and potential energies. The results are all consistent with the critical volume fractions obtained from the fits of the power law to the simulation data.
منابع مشابه
Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions.
We numerically produce fully amorphous assemblies of frictionless spheres in three dimensions and study the jamming transition these packings undergo at large volume fractions. We specify four protocols yielding a critical value for the jamming volume fraction which is sharply defined in the limit of large system size, but is different for each protocol. Thus, we directly establish the existenc...
متن کاملNew jamming scenario: from marginal jamming to deep jamming.
We study the properties of jammed packings of frictionless spheres over a wide range of volume fractions. There exists a crossover volume fraction which separates deeply jammed solids from marginally jammed solids. In deeply jammed solids, all the scalings presented in marginally jammed solids are replaced with remarkably different ones with potential independent exponents. Correspondingly, the...
متن کاملExploring the jamming transition over a wide range of critical densities
We numerically study the jamming transition of frictionless polydisperse spheres in three dimensions. We use an efficient thermalisation algorithm for the equilibrium hard sphere fluid and generate amorphous jammed packings over a range of critical jamming densities that is about three times broader than in previous studies. This allows us to reexamine a wide range of structural properties char...
متن کاملJamming transition and inherent structures of hard spheres and disks.
Recent studies show that volume fractions φ(J) at the jamming transition of frictionless hard spheres and disks are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate the dependence of φ(J) on the initial configurations of the parent fluid equilibrated at a volume fraction φ(eq), before compressing to generate a jammed packing. W...
متن کاملAdhesive loose packings of small dry particles.
We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The structura...
متن کامل